Synthesis of basement membrane collagen by cultured human endothelial cells
نویسندگان
چکیده
Studies were performed to determine if cultured human endothelial cells synthesized basement membrane collagen. In culture, endothelial cells were attached to grossly visible membranous structures which on light microscopy were composed of ribbons of dense, amorphous material. On transmission electron microscopy, these membranous structures consisted of amorphous basement membrane, and material morphologically similar to microfibrils and elastic fibers. By immunofluorescence microscopy, these membranous structures stained brightly with antisera to human glomerular basement membrane. Cultured endothelial cells incorporated [3H]proline into protein; 18% of the incorporated [3H]proline was solubilized by purified collagenase. When endothelial cells were cultured with [14C]proline, 7.1% of the incorporated counts were present as [14C]hydroxyproline. Cultured endothelial cells were labeled with [3H]glycine and [3H]proline and digested with pepsin. The resulting fractions on analysis by SDS-polyacrylamide gel electrophoresis contained two radioactive protein peaks of mol wt 94,200 and 120,500. Both these peaks disappeared after digestion with purified collagenase. The peak of mol wt 120,500 corresponds to that of alpha1 (IV) collagen; the peak of the mol wt 94,200 probably corresponds to that of alpha1 (III) collagen. Thus, cultured human endothelial cells synthesize material which is morphologically and immunologically like amorphous basement membrane and biochemically like basement membrane collagen. Cultured endothelial cells probably also synthesize material which is morphologically similar to microfibrils and elastic fibers.
منابع مشابه
Basement membrane synthesis by human corneal epithelial cells in vitro.
PURPOSE Collagen gels may prove to be potential carriers for transplantation of cultured corneal epithelial cells. The purpose of this study was to evaluate the suitability of collagen gels in comparison with corneal stromal blocks as the substrate to support the growth of human corneal epithelial cells in culture and the synthesis and deposition of the basement membrane components by these cel...
متن کاملStructural basement membrane components and corresponding integrins in Schlemm's canal endothelia
PURPOSE The conventional outflow pathway provides the primary source of resistance to aqueous humor drainage, regulating intraocular pressure. Despite large pressure gradients across the inner wall of Schlemm's canal (SC), cells remain attached to their basement membrane. The goal of this study was to examine integrin-extracellular matrix binding partners of the inner wall basement membrane tha...
متن کاملRole of laminin and basement membrane in the morphological differentiation of human endothelial cells into capillary-like structures
We have defined a signal responsible for the morphological differentiation of human umbilical vein and human dermal microvascular endothelial cells in vitro. We find that human umbilical vein endothelial cells deprived of growth factors undergo morphological differentiation with tube formation after 6-12 wk, and that human dermal microvascular endothelial cells differentiate after 1 wk of growt...
متن کاملDifferentiation in human amniotic fluid cell cultures: I: Collagen production.
The collagen produced by differentiated cells cultured from human amniotic fluid was characterized in two ways. By chain composition and by 4-hydroxyproline:3-hydroxyproline isomer ratio, the collagen synthesized by F-type (fibroblast) cells was indistinguishable from that made by cultured fetal dermal fibroblasts. The predominant cells in young amniotic fluid cultures, termed AF-type, produced...
متن کاملStudy of Basement Membrane Type IV Collagen Appearance in the Brain Choroids Plexus of Mouse Fetuses
Introduction & Objective: The brain choroids plexus (BCP) plays an important role in the cerebrospinal fluid (CSF) production, but its characterization is still incomplete. Collagen type IV, is one of the most important proteins of basement membrane (BM) and extracellular matrix (ECM) of BCP. In the present study we investigated the differential period of type IV collagen in basement membrane...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- The Journal of Experimental Medicine
دوره 144 شماره
صفحات -
تاریخ انتشار 1976